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ABSTRACT 

Background: In Mathematics Education, the theoretical reference of 

Advanced Mathematical Thinking has contributed to some research. However, others 

opt for a different but somehow related theoretical reference. Identifying the similarities 

and differences between those references can elucidate the researcher’s motivations 

when adopting one or another reference. Objective: to synthesise three studies 

involving Mathematical Creativity, Advancing Mathematical Activity and Advanced 

Mathematical Knowledge, respectively, and to illustrate possible contributions of those 

theoretical references in the analysis of a written production. Design: the research is 

qualitative and theoretical and speculative so that theoretical relationships were carried 

out and used later in the analysis of the written production. Setting and Participants: 

the research involves a participant with a degree in mathematics with whom the 

researchers had a virtual interaction to present the questions. Data collection and 

analysis: the procedures performed in the resolution of questions prepared based on the 

OBMEP question bank are analysed and, with the support of this example of analysis, 

possible contributions of each reference in the analysis of a written production are 

discussed. Results: none of the references covers all the thinking mobilised in the 

activity, but each one favours the focus on specific aspects that were verified in the 

written production of the research participant, in line with the similarities and 

divergences emphasised in the theoretical appreciation of each reference. Conclusions: 

the knowledge of different theoretical frameworks provides the teacher with 

foundations to exercise their teaching practice and the researcher with options for an 

adequate choice for their research. 
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Alguns Referenciais Teóricos Relacionados ao Pensamento Matemático 

Avançado 

 

RESUMO 

Contexto: Na Educação Matemática, o referencial teórico do Pensamento 

Matemático Avançado tem sido um aporte para algumas pesquisas. Contudo, outras 

optam por um referencial teórico diferente, mas de alguma forma relacionado. 

Identificar as similaridades e divergências entre esses referenciais pode elucidar as 

motivações do pesquisador ao adotar um ou outro referencial. Objetivo: sintetizar três 

pesquisas envolvendo, respectivamente, a Criatividade Matemática, a Atividade 

Matemática Avançando e o Conhecimento Matemático Avançado e ilustrar possíveis 

contribuições desses referenciais teóricos na análise de uma produção escrita. Design: 

a pesquisa é de natureza qualitativa e teórica e especulativa, de modo que relações 

teóricas foram realizadas e utilizadas posteriormente na análise da produção escrita. 

Ambiente e participantes: a pesquisa envolve uma participante licenciada em 

Matemática com a qual os pesquisadores tiveram uma interação virtual para 

apresentação das questões. Coleta e análise de dados: analisam-se os procedimentos 

realizados na resolução de questões elaboradas com base no banco de questões da 

OBMEP e discute-se, com o apoio desse exemplo de análise, possíveis contribuições 

de cada referencial na análise de uma produção escrita. Resultados: nenhum dos 

referenciais ilumina todo o pensamento mobilizado na atividade, mas cada um favorece 

o foco em determinados aspectos que foram verificados na produção escrita da 

participante da pesquisa, em conformidade às similaridades e divergências enfatizadas 

na apreciação teórica de cada referencial. Conclusões: o conhecimento de diferentes 

quadros teóricos possibilita ao professor fundamentações para exercer sua prática 

docente e ao pesquisador opções para uma escolha adequada à sua pesquisa.  

Palavras-chave: Educação Matemática; Pensamento Matemático Avançado; 

Criatividade Matemática; Atividade Matemática Avançando; Conhecimento 

Matemático Avançado. 

 

INTRODUCTION 

Studies have adopted the theoretical framework of Advanced 

Mathematical Thinking (AMT) developed by Tall (2002) and Dreyfus (2002). 

Other authors were based on different but somehow related references. 

The book Advanced Mathematical Thinking, organised by David Tall 

in 1991 and republished in 2002, has chapters written by Tall (2002), Dreyfus 
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(2002), and Ervynck (2002), among others, still frequently adopted by 

researchers. In addition, some previous concepts of mathematical thinking were 

incorporated into this framework, such as concept image and concept definition 

(Tall & Vinner, 1981), resumed by Tall (2002). 

Although Tall (2002) considers that AMT differs from the elementary 

because of the possibility of definition and formal deduction, proof in a logical 

way based on those definitions, formal abstraction, and consequence of 

advanced mathematics, from a perspective that aims to overcome the students’ 

difficulties in the transition to higher education, other researchers consider that 

the AMT occurs since the most basic school levels. This perspective is 

consistent with that of Dreyfus (2002), who considers the AMT as a complex 

process that involves a large number of processes that interact in intricate ways. 

According to Dreyfus (2002, p. 26), “There is no sharp distinction between 

many of the processes of elementary and advanced mathematical thinking, even 

though advanced mathematics is more focused on the abstractions of definition 

and deduction”, but “One distinctive feature between advanced and elementary 

thinking is complexity and how it is dealt with”. Processes that allow managing 

the complexity of a mathematical situation, such as generalisation, synthesis, 

and translation between representations, can occur at different levels of 

schooling. 

Bianchini and Machado (2015), Sousa and Almeida (2017), Vidotti and 

Kato (2018), and Mateus-Nieves and Jimenez (2020) are examples of research 

that used the AMT framework. The first worked on AMT processes as per 

Dreyfus (2002), with teachers in continuing education, who reviewed their 

reflections on their resolutions after studying the processes. The second 

analysed the AMT processes of a licentiate, according to Tall (2002) and 

Dreyfus (2002), while he was developing modelling activities. The third 

analysed the difficulties of mathematics degree students in learning the limit of 

functions of several variables, based on the concepts proposed by Tall and 

Vinner (1981). And the fourth articulated the Knot Theory with the AMT, 

according to research based on Tall, Dreyfus, and others, creating a seminar for 

undergraduate students in mathematics to delve into the process of 

mathematical generalisation. 

As we have highlighted, those studies that used the AMT chose some 

theorists and their ideas as a basis and, in some cases, articulated them with 

other studies related to the context of their objectives, sometimes creating their 

own interpretation of that framework. Other studies were based on a theoretical 

framework different from the AMT to study advanced thinking in mathematics, 
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such as the Articulation Principle, Advanced Mathematical Knowledge, 

Mathematical Creativity, and Advancing Mathematical Activity. 

The different theoretical references adopted by the researchers led us 

to question the reasons for those choices, whether they could be the same and 

in which situations one would be more appropriate than the other. The 

similarities between theories may indicate the same perspective and the same 

underlying logic for working with each one. On the other hand, their differences 

need to be clarified so that researchers in Mathematics Education can choose 

which one is best suited to their research. 

To answer those questions, we established the objective of synthesising 

three research works involving Mathematical Creativity, Advancing 

Mathematical Activity, and Advanced Mathematical Knowledge, respectively, 

and to illustrate possible contributions of those theoretical references in the 

analysis of a written production. 

Using the AMT as a theoretical basis (Tall, 2002; Dreyfus, 2002), we 

discuss the other three theoretical references linked to the corpus of articles that 

we defined as the scope of the research: Advanced Mathematical Knowledge 

(Zazkis & Leikin, 2010), Mathematical Creativity (Nadjafikhah, Yaftian, & 

Bakhshalizadeh, 2012), and Advancing Mathematical Activity (Rasmussen, 

Zandieh, King, & Teppo, 2005).  

In summary, in the following section, we discuss the methodological 

issues. After that, we present the synthesis of the articles in the corpus, their 

theoretical references and relations and interrelations with the AMT. Then, we 

analyse a written production in the light of those references and, finally, present 

our conclusions.  

 

METHODOLOGICAL PROCEDURES 

In this qualitative (Bogdan & Biklen, 1994), theoretical, and 

speculative research (Martineau, Simard, & Gauthier, 2001), we used three 

theoretical references to analyse the procedures of a mathematics teacher to 

solve questions based on the Brazilian Public School Mathematics Olympiad 

[OBMEP] (2007). For this, those three theoretical references were discussed 

from three studies that we synthesised and interpreted in search of relationships 

based on the AMT. Based on those discussions and the analysis example, we 

established possible contributions of each reference in the analysis of a written 

production.  
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To support the method referring to the relationships that will be 

established between the theoretical references amid the synthesis we need to 

clarify it before starting to shorten the articles. For this reason, before 

describing the theoretical framework, we describe the methodological 

procedures.  

To compare the theoretical references and observe some similarities 

before and after illustrating them in the analysis of a written production, we 

carried out a theoretical and speculative study, i.e., we promoted theoretical 

declarations from other theoretical statements (Martineau, Simard, & Gauthier, 

2001). Theoretical and speculative research involves the axes of interpreting, 

arguing, and telling. “The interpreting axis involves hermeneutics and 

conceptual analysis; the arguing axis takes us back to rhetoric and, finally, the 

telling axis involves literary practice” (Martineau, Simard, & Gauthier, 2001, 

p. 9)1. 

Hermeneutics is the art of interpreting, necessary to avoid 

misunderstandings as geographic, temporal, or cultural distance separates a text 

from its reader (Martineau, Simard, & Gauthier, 2001). 

Researchers who carry out theoretical and speculative research 

are confronted with the texts (books, articles, communications) 

of other researchers who have addressed the same subject. 

Thus, even before producing their own text, researchers must 

interpret those previous texts to overview the investigated 

field, to specify their research question, and to formulate an 

original problem. This permanence in the specialised literature 

is an exercise in interpretation, a work of hermeneutics and 

conceptual analysis. (Martineau, Simard, & Gauthier, 2001, p. 

12)2. 

According to Martineau, Simard, and Gauthier (2001, p. 16), “from the 

conceptual analysis, he or she [the researcher] will keep in mind the need to 

                                    
1 L’axe de l'interpréter implique l'herméneutique et l'analyse conceptuelle; l’axe de l'argumenter nous 

renvoie à la rhétorique et, finalement, l’axe du raconter englobe la pratique littéraire. 
2 Les chercheurs qui conduisent des recherches théoriques et spéculatives sont confrontés aux textes (livres, 

articles, communications) d'autres chercheurs qui se sont penchés sur le même sujet. Ainsi, avant même de 

produire leur propre texte, les chercheurs doivent donc interpréter ces textes antérieurs afin d'avoir une vue 
d'ensemble du champ investigué, de préciser leur question de recherche et de formuler une problématique 

originale. Ce séjour dans la littérature spécialisée est un exercice d'interprétation, un travail 

d'herméneutique et d'analyse conceptuelle. 
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correctly define the concepts”3. The precise definition of the concepts present 

in the theoretical references of mathematical thinking is important to establish 

coherent relationships between concepts from different references. 

Argumentation uses presentations or statements that aim to show the validity 

of a position. Thus, the theoretical analysis of the corpus and an example of 

analysis of a written production contribute to the plurality of arguments 

recommended by Martineau, Simard, and Gauthier (2001). Finally, in the 

telling axis, we highlight the production of an “unprecedented issue, to propose 

a new analysis based on the interpretation of previous texts and rigorous 

argumentation” (Martineau, Simard, & Gauthier, 2001, p. 20)4. 

The analysis of written production allows us to illustrate the differences 

between analyses carried out with each of the theoretical references, and 

exemplify the use of those references, aiming to contribute to future research. 

In an analysis of written production and educational research in 

general, it is not possible to isolate one cause and keep the others constant to 

verify the effects of its variation. Not only the theoretical framework adopted, 

but the researched subjects, the resolutions, and even the researchers influence 

the research. Hence, the analysis of written production is subjective, which is 

characteristic of qualitative research, although the methods adopted help reduce 

biases (Bogdan & Biklen, 1994, p. 67-68). 

As for the procedures of analysis of written production, the choice of a 

participant with a degree in mathematics is justified by the characteristics of 

the theoretical references adopted: to analyse the Advanced Mathematical 

Knowledge, the research participant must have mathematical knowledge 

obtained at undergraduate and postgraduate levels (Zazkis & Leikin, 2010); 

training as a mathematics teacher can favour the articulation between advanced 

and school mathematics so that the presented resolutions allow us to analyse 

the progression of mathematical thinking, an important aspect in the 

discussions regarding the Advancing Mathematical Activity  (Rasmussen et al., 

2005).  

Thus, we chose questions that allow multiple solutions to analyse 

Mathematical Creativity (Nadjafikhah, Yaftian, & Bakhshalizadeh, 2012), and 

that can be solved by mobilising both school mathematical knowledge and 

Advanced Mathematical Knowledge. We found questions with those 

                                    
3 de l'analyse conceptuelle, il [le chercheur] gardera en mémoire la nécessité de définir correctement les 
concept. 
4 une problématique inédite, à proposer une nouvelle analyse sur la base de l'interprétation des textes 

antérieurs et de l'argumentation rigoureuse. 
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characteristics in the OBMEP (2007) question bank. There, we selected three 

and modified them according to our objectives. 

The modifications were carried out after individual and collective 

resolutions tested by all authors and discussed, in a process repeated a few times 

to create favourable conditions for multiple solutions, to encourage analyses in 

the light of each of the three theoretical references, according to the solutions 

foreseen, and eliminate possibilities of multiple interpretations of the utterance.  

Besides the resolutions, we asked the participant to report in writing 

the procedures adopted to resolve the issues, from hypotheses to conclusions, 

including any frustrated solutions and consultations with materials such as 

books, websites, and videos. So that thinking would not be hindered by the 

rush, we did not impose a time limit for the resolutions, which were delivered 

on the participant’s initiative after about two weeks the questions had been 

handed.  

The research was approved by the Ethics Committee in Research 

Involving Human Beings of the State University of Londrina through opinion 

number  5.144.763. 

In this article, we analysed two of the three questions resolved by the 

participant. Considering that our objective was not to examine the participant’s 

performance but to discuss possible contributions of three theoretical references 

in the analysis of a written production, we selected the two questions whose 

resolutions allow a more fruitful discussion with regard to Mathematical 

Creativity, Advancing Mathematical Activity, and Advanced Mathematical 

Knowledge. 

 

THEORETICAL REFERENCES 

As mentioned in the introduction, some studies that use the AMT 

theoretical framework make their connection with other studies related to the 

context of their objectives, sometimes creating their own interpretation of this 

framework. 

For example, Sousa and Almeida (2017) relate cognitive processes 

focused on the development of modelling activities to AMT processes. This 

relationship justifies the coherence of using the AMT framework to analyse the 

development of students’ thinking processes in modelling activities. 
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Likewise, the justifications of other studies for using the AMT are 

linked to the authors’ interpretation of the theoretical framework and 

relationships in the context of their research. Mateus-Nieves and Jimenez 

(2020) created a ‘holistic scheme’ to analyse AMT skills integrated into the 

Knot Theory, aiming to strengthen the generalisation process. This articulation 

was used as justification: 

Linking some concepts of knot theory with the development of 

advanced mathematical thinking skills allows us to expand the 

process of mathematical generalisation aiming to strengthen 

the range of didactic strategies that guide the mathematics 

teaching and learning that enables, reflectively, and 

innovatively, the interaction with various backgrounds and 

training levels. (Mateus-Nieves & Jimenes, 2020, p. 66). 

Similarly, Bianchini and Machado (2015) justified the importance of 

mathematics teachers knowing the AMT processes: 

In this way, knowledge about the AMT processes allows the 

mathematics teacher to evaluate both the difficulties inherent 

to the concepts and ideas that they want to develop with their 

students and those presented by the students’ lack of habit with 

the use of the required AMT processes in the construction of 

such knowledge. [...] the explicit knowledge of the AMT 

processes can help the teacher to develop activities that aim at 

the students’ appropriation of those processes. (Bianchini & 

Machado, 2015, p. 29)5. 

Vidotti and Kato (2018) justified the importance of analysis of concept 

image and concept definition in the diagnosis of difficulties: 

The need to diagnose problems in the teaching and learning 

process, which go beyond variables such as the teacher, the 

curriculum, the environment, study habits, and purely 

mathematical problems, has led researchers to seek 

clarification on the cognitive processes involved in 

                                    
5 Dessa forma, o conhecimento sobre os processos do PMA possibilita ao professor de matemática avaliar, 

tanto as dificuldades inerentes aos conceitos e ideias que deseja desenvolver com seus alunos, como 
também aquelas apresentadas pela falta de hábito dos alunos com a utilização dos processos do PMA 

requeridos na construção de tais conhecimentos. [...] o conhecimento explícito dos processos do PMA pode 

auxiliar o professor a elaborar atividades que visem à apropriação desses processos por seus alunos. 
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mathematical reasoning, whose theoretical bases are supported 

by studies aimed at understanding how the human brain works. 

In this sense, Tall and Vinner (1981) developed the notions of 

concept image and concept definition [...]. (Vidotti & Kato, 

2018, p. 931)6. 

Those are examples of research in which the AMT has adequately 

contributed to the achievement of objectives. Inspired by those references, in 

this section we synthetise and relate the corpus researches, linked, respectively, 

to Mathematical Creativity, Advancing Mathematical Activity and Advanced 

Mathematical Knowledge. These theoretical references are linked to the AMT, 

as we establish below, and they can support some research in which the AMT 

does not fit as in the ones mentioned above. Nadjafikhah, Yaftian, and 

Bakhshalizadeh (2012) carried out a theoretical work that defines Mathematical 

Creativity based on several works that addressed it. Rasmussen et al. (2005) 

elaborated the theoretical framework of the Advancing Mathematical Activity, 

aiming to offer an alternative characterisation of the AMT. Zazkis and Leikin 

(2010) defined the concept of Advanced Mathematical Knowledge to 

investigate how teachers use their mathematical knowledge in teaching. 

We started our discussion with Mathematical Creativity. Creativity 

plays a key role in the AMT cycle, as it contributes to the early stages of theory 

development, assists in the formulation of mathematics as a system of axioms 

and proofs, and allows new ideas to be reformulated in previously unknown 

ways (Ervynck, 2002). 

Nadjafikhah, Yaftian, and Bakhshalizadeh (2012) present some of the 

definitions found in the literature for Mathematical Creativity. The ability to 

analyse a problem from different perspectives, identify patterns, similarities 

and differences, and generate multiple ideas and choose a method that is 

suitable for dealing with an unfamiliar mathematical situation is one way of 

describing Mathematical Creativity.  

Nadjafikhah, Yaftian, and Bakhshalizadeh (2012) support, based on 

other studies on the subject, the division of Mathematical Creativity into two 

                                    
6 A necessidade de diagnosticar problemas no processo de ensino e aprendizagem, que vão além de 
variáveis como o professor, o currículo, o ambiente, hábitos de estudos, bem como problemas de ordem 

puramente matemática, levou pesquisadores a buscarem esclarecimentos sobre os processos cognitivos 

envolvidos no raciocínio matemático, cujas bases teóricas apoiam-se em estudos destinados a compreender 
como o cérebro humano funciona. 

Nesse sentido, Tall e Vinner (1981) desenvolveram as noções de conceito imagem e conceito definição 

[...]. 
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levels: professional and school. At the professional level, creativity is defined 

as the ability to produce original work that expands the body of mathematical 

knowledge and the potential to pose new questions to other mathematicians. At 

the school level, creativity is associated with problem-solving and can be 

identified in the process that results in unusual or insightful solutions to a 

problem and in formulating questions or possibilities that allow a problem to 

be considered from a new perspective. 

For Ervynck (2002), problem-solving makes students deal with failures 

and get used to the idea that there is no algorithm capable of providing all the 

answers. In a constantly changing society, being able to apply algorithms is not 

enough. It is necessary for thinking to be flexible, and tasks that demand 

creativity contribute to the development of this flexibility. 

However, mathematics is generally presented to students as a finished 

product rather than a process, which is criticised by Tall (2002) and Dreyfus 

(2002). For the authors, presenting Mathematics as a sequence of definitions, 

theorems, and proofs shows the logical chain of science but omits that 

knowledge often results from sequences of trial and error, intuitive 

formulations, and inaccuracies. 

To stimulate students’ creativity, Bezerra, Gontijo, and Fonseca (2021) 

propose that teachers give creative feedback: 

The different instruments used for students to express their 

thinking constitute rich analytical material. Through them, 

teachers and students can establish a communicative process 

that favours the development of creativity and learning in 

mathematics. We call this communicative process, which is 

part of the formative assessment, feedback. (Bezerra, Gontijo, 

& Fonseca, 2021, p. 93). 

We define feedback intended to develop creative potential as 

creative feedback. (Bezerra, Gontijo, & Fonseca, 2021, p. 94). 

Still, Ervynck (2002) considers the importance of intuition to guide 

imagination and inspiration that formulate the required results. The author 

agrees with Tall’s (2002) considerations, for which intuition is a product of the 

concept image (Tall & Vinner, 1981) of an individual, so that the more educated 

in logical thinking, the more rigorous its intuition.  

Creativity is at the heart of mathematical thinking, understood as “a 

creative activity that brings with it the possibility of human error. Indeed the 
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very possibility of error is what makes the major advances such monuments of 

human success” (Ervynck, 2002, p. 52). Therefore, activities that stimulate 

creativity have the power to humanise mathematics as they expose its fallibility. 

Teachers must identify, encourage, and improve students’ creative 

ability by proposing, for example, multi-solution tasks, which are tasks that 

allow for different resolutions based on different representations of 

mathematical concepts. Another way to stimulate students’ creativity is to 

propose experiments with open problems, providing them with the opportunity 

to reveal their understanding of a concept. Furthermore, the exercise of 

creativity requires an interactive environment, i.e., an environment in which 

students feel safe to share their perceptions and ideas. 

The second theoretical reference discussed in this research is the one 

developed by Rasmussen et al. (2005), who characterise AMT as an Advancing 

Mathematical Activity and is not limited to specific grades or content levels. 

With this name, the authors aim to highlight the students’ total activity process, 

not focusing on their final stage but on the progression in mathematical 

thinking, considering the different mathematical activities derived from social 

practices. 

This progression of thought is hardly analysed by teachers, as Bianchini 

and Machado (2015, p. 29) observe: 

[…] when a mathematics teacher is asked to analyse the 

knowledge mobilised in solving a problem situation, they focus 

and describe mainly mathematical procedures, often already 

automated, and sometimes tacitly accepted. This fact makes it 

difficult for them to perceive the processes they experience, 

such as the occurrence of trial and error, comings and goings, 

visualisations, validations, generalisations, etc., which are part 

of their knowledge of doing mathematics [...]7. 

Rasmussen et al. (2005) understand doing and thinking as being 

reflexive in nature so that students engage in specific activities, can represent 

their understanding, and expand their thinking and ways of reasoning in the 

process. For this purpose, horizontal and vertical mathematising constructs are 

                                    
7 [...] quando um professor de matemática é instado a analisar os conhecimentos mobilizados em sua 

resolução de uma situação-problema, ele enfoca e descreve principalmente os procedimentos matemáticos, 
muitas vezes já automatizados, e algumas vezes tacitamente aceitos. Tal fato dificulta sua percepção sobre 

os processos vivenciados, como a ocorrência de tentativa e erro, idas e vindas, visualizações, validações, 

generalizações etc., que fazem parte de seu saber sobre o fazer matemático [...]. 
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used with examples of symbolisation, algorithmisation, and definition activities 

to characterise the Avancing Mathematical Activity. 

The authors consider that for mathematical learning to occur, it is 

necessary to participate in different types of mathematical practices. In this 

way, the horizontal and vertical mathematising form a reflexive relationship in 

carrying out the activities and are intrinsically associated, allowing the 

elaboration of comparisons regarding the nature of the students’ activity and 

providing a language to approach the process by which they develop new 

visions and awareness. To clarify the Advancing Mathematical Activity, 

Rasmussen et al.. (2005) point out that horizontal mathematising is a broader 

way to include fields of problems or situations that are, from the perspective of 

those involved, already mathematical in nature. Therefore, those problematic 

fields or problematic situations depend on the background, experiences, and 

goals of those involved in the mathematical activity. 

Rasmussen et al. (2005) understand horizontal mathematising as a 

problem field related to the formulation of a problem situation in such a way 

that it is friendly for further mathematical analysis. Thus, horizontal 

mathematising can include, but is not limited to, activities such as 

experimenting, pattern snooping, classifying, conjecturing, and organising. In 

turn, vertical mathematising relates the activity carried out by students built 

from horizontal activities involving reasoning of abstract structures, 

generalisation, and formalisation to the purpose of creating new mathematical 

activities for students, promoting a sequence of progressive mathematisations 

with multiple layers of types of horizontal and vertical activities being 

interrelated.  

Symbolisation, algorithmisation, and definition activities are related to 

some AMT processes. Symbolisation encompasses representation processes 

that, according to Dreyfus (2002), include relationships between signs and 

meanings. The activity of developing an algorithm involves generalising a 

procedure for solving a problem. In the definition activity, students base 

themselves on their concept image (Tall & Vinner, 1981) to create a definition 

and check possible conflicts generated to improve it.  

In addition, the activities most linked to vertical mathematising are 

AMT processes. In fact, the reasoning of abstract structures requires the student 

to perform abstraction processes that, together with generalisation, according 

to Dreyfus (2002), are processes that allow managing the complexity of a 

situation. Formalisation, according to Tall (2002), is a distinctive factor of the 

AMT in relation to the Elementary Mathematical Thinking.  
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We emphasise that the AMT characterisations proposed by Tall (2002) 

and Dreyfus (2002) value the complete cycle of mathematical thinking, and not 

only the product of mathematical thinking, as the term AMT may suggest when 

compared to the term adopted by Rasmussen et al. (2005). However, 

‘Advancing Mathematical Activity’ is consistent with Rasmussen et al.’s 

(2005) proposal of offering an alternative characterisation of the AMT that 

emphasises progression in students’ mathematical activity, focusing on 

mathematical practices and qualitatively different types of activities within 

those practices. 

The third referential addressed in this discussion is developed by 

Zazkis and Leikin (2010), who adopted Advanced Mathematical Knowledge 

(AMK) as a theoretical contribution to investigate how teachers use their 

mathematical knowledge in teaching. The authors themselves defined AMK as 

the knowledge of the subject matter acquired in undergraduate courses in 

Mathematics and made an association with the AMT, which does not have a 

precise definition. According to the authors, the difference in perspectives 

regarding the AMT changed the description of its research area to ‘tertiary 

mathematics’, and the definition of AMK is in line with this change. 

This reflects a notion that the AMT can refer to what is taught in 

Advanced Mathematics, something that we have identified mainly in previous 

works and lines of research that used the term ‘Advanced Mathematical 

Thinking’. However, we understand AMT as thinking that, according to 

Dreyfus (2002), occurs through thinking processes complex enough to manage 

the complexity of a mathematical situation. On the other hand, AMK is content 

knowledge. As thinking processes and content knowledge are distinct objects, 

there is no identity between the AMT and the AMK, although we perceive a 

collaboration between them, as discussed below. 

In their work, Zazkis and Leikin (2010) analysed secondary school 

teachers’ perceptions (corresponding to the elementary school - final years and 

high school in Brazil) of the use of AMK in their teaching practice. For this, 

they interviewed 52 teachers who teach mathematics in secondary education, 

asking to what extent they use AMK in teaching and asking for examples of 

mathematical topics, teaching situations, and problems in which AMK is 

essential for teachers. 

As a result, the study showed a variation in how much teachers claimed 

to use the AMK in their practice. Furthermore, claims that the AMK is used all 

the time did not generally correspond to specific examples of such use. Some 

teachers exemplify the use of the AMK with general topics, such as calculus 
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and statistics, but they were hardly able to specify situations or problems. 

Moreover, the authors highlighted non-content-specific examples in teachers’ 

answers, such as ways of thinking, ‘good insight’ for teaching, making 

connections between content within and beyond the curriculum, and answering 

students’ questions, seeing a ‘better picture’ or a ‘whole picture’ of the subject, 

sense of terrain, confidence, and ‘cross-cutting themes’ or ‘meta-mathematical 

issues’ such as ‘proof’, ‘language’, and ‘precision and aesthetics’, which can 

appear in any mathematical content. This indicates that many teachers see 

AMK as an indirect benefit to teaching practice, and not necessarily a specific 

benefit for each module studied during graduation. Zazkis and Leikin (2010) 

conclude that many teachers’ difficulties in articulating specific examples of 

the use of AMK highlight a gap between university mathematics and secondary 

school mathematics. 

We noticed a relationship between some indirect benefits of AMK and 

AMT processes, especially regarding the issues that Zazkis and Leikin (2010) 

called ‘meta-mathematics’. The proof process is seen by Tall (2002) as the final 

stage in the development of mathematical thinking; it is when ideas gain 

precision. At this stage, the language needs precision so that ideas are organised 

in a logical sequence based on definitions, avoiding inconsistencies. The 

aesthetics observed by Zazkis and Leikin (2010, p. 274) concerns ‘beautiful 

solutions’, which is related to Mathematical Creativity, as it involves the search 

for different solutions and valuing the most creative ones.  

The connections with broader contexts are related to the processes of 

generalisation and synthesis, which are characteristic of the AMT, according to 

Dreyfus (2002). In fact, generalisation involves expanding a domain of validity, 

whereas synthesis means combining parts in such a way that they form a whole. 

When the teacher is able to see the whole in a single image, he/she can create 

connections between the elements inside and outside the curriculum to which 

they are related. Thus, the synthesis process relates to the teacher’s competence 

to make connections between content within and beyond the curriculum, to see 

a ‘whole picture’ of the issue and to have a sense of terrain, which are benefits 

of the AMK according to the teachers interviewed by Zazkis and Leikin (2010).  

From these and other thinking processes developed during studies of 

Advanced Mathematics, we can say that the development of the AMK implies 

the development of the AMT. On the other hand, Tall (2002) and Dreyfus 

(2002) argue that the study of advanced processes that occur in the minds of 

mathematicians when developing their research is important to better 

understand the same processes that occur with students while learning 



 

230 Acta Sci. (Canoas), 24(3), 216-243, May/Jun. 2022  

advanced mathematical concepts. Thus, the development of the AMT also 

favours mathematics learning in higher education so that we can say that the 

developments of the AMT and the AMK occur simultaneously, one 

contributing to the other. Based on Rasmussen et al. (2005), we can add that 

the experiences carried out by the Advancing Mathematical Activity, both in 

horizontal mathematising and in vertical mathematising, provide forms of 

thinking that foster the AMT and the AMK.  

The choice of theoretical framework made by Zazkis and Leikin (2010) 

was consistent with their intention to investigate teachers’ perceptions 

regarding the use of their knowledge of Advanced Mathematics. The AMK is 

the object whose perceptions of use were investigated, while the AMT does not 

have such a direct relationship with the research objective. Still, as the authors 

emphasise, the AMT has different conceptions, some not exclusively related to 

Advanced Mathematics but also to school mathematics. In addition, we point 

out that the researchers showed the AMK definition to the teachers interviewed, 

serving as a basis for the formulation of questions and answers. This was only 

possible because there was a precise definition, simple enough to be understood 

by teachers after a quick reading. 

There are points of convergence between the mentioned references. For 

example, Mathematics is seen as a human activity from the perspective of the 

AMT, Mathematical Creativity and Advancing Mathematical Activity. Thus, 

those references consider that Mathematics must be reconstructed in the 

classroom and not given as something finished and polished. In this way, those 

theoretical references converge in supporting the idea of a favourable 

environment for learning as an environment in which the students are active in 

the process of building their knowledge and, for that, open questions are 

recommended, and with a complexity that goes beyond the mere 

operationalisation of concepts. 

The application of the concept of Mathematical Creativity is, in a way, 

present in all those references. Rasmussen et al. (2005) report an ‘epiphany’ 

that one of the participants of their research described when having an idea of 

a differentiated procedure to solve a question: 

Joaquin’s use of the word epiphany to describe his reasoning 

indicates that his solution was not the result of a memorized 

procedure. It appears that Joaquin had developed a highly 

integrated and complex way of reasoning about the space of 

solution functions to differential equations and had developed 
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effective and dynamic symbolizations to foster and further his 

reasoning. (Rasmussen et al., 2005, p. 62). 

Zazkis and Leikin (2010) describe the contribution of AMK to 

mathematical ‘aesthetics’ from the speech of a participating teacher, in the 

sense of presenting beautiful solutions: “I also am aware of the aesthetics that 

exists in mathematics and try to bring to my classroom examples of beautiful 

solutions and encourage students finding beautiful solutions. (Dina-2)” (Zazkis 

& Leikin, 2010, p. 274). 

Both the study of AMT processes and Mathematical Creativity are 

inspired by the thinking of mathematicians when developing their research:  

The critical role of these creative mathematicians, who have 

been able to create new mathematical insights and ideas, is so 

Much apparent that there is no need to be emphasized. 

However, study of processes of their creative thinking is 

valuable. (Nadjafikhah, Yaftian, & Bakhshalizadeh, 2012, p. 

285). 

Another highlight of this approximation is the AMT processes (Tall, 

2002; Dreyfus, 2002), as we commented on the processes of proof, 

representation, syntheses, and in terms of intuition and formalisation.  

We can also highlight differences between the theoretical references 

analysed. The choice of terms designates something to emphasise. While the 

Advancing Mathematical Activity underscores the progression of mathematical 

thinking, the Mathematical Creativity emphasises differentiated thinking, and 

the AMK emphasises Advanced Mathematics content rather than advanced 

thinking.  

Next, we discuss a written production based on the theoretical 

references that we present.  

 

ANALYSING A WRITTEN PRODUCTION 

We analysed questions solved by a participant with a degree in 

Mathematics based on the theoretical references adopted, which allow multiple 

solutions and can be solved by mobilising both school mathematical knowledge 

and Advanced Mathematical Knowledge. The two questions selected for 

analysis were resolved without consulting any materials, as reported by the 

participant. 
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The first question selected for analysis has a statement as shown in 

Figure 1. 

 

Figure 1 

First question. Prepared based on the OBMEP question bank (2007) 

1) Consider an area bounded by an equilateral triangle. 

a) Present drawings, indicating some ways to divide this area into five parts of the 

same area. 

b) What knowledge or skills did you mobilise in solving this issue? At what level of 

your schooling were these topics learned? Or were they learned throughout your 

professional performance? 

 

First, the participant sought to imagine possible solutions and thus 

organised four possibilities, which she called configurations, and drew them 

without strict proportions, as shown in Figure 2. 

 

Figure 2 

Configurations Prepared by the Participant 
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Considering that the original triangle has a height ℎ and a base 𝑏, the 

participant sought to rigorously construct each configuration in a geometric 

form and prove that the area of each region is 𝑏 ⋅ ℎ/10. Starting with 

configuration 2, she realised that the height of the three lower triangles is the 

same, so the base of the central triangle would need to be /2 , which would lead 

to a division of the original triangle into four equal parts, and not five, as 

required by the statement. 

Configuration 1 was built with ruler and compass, from bottom to top, 

looking for, in each triangular region, the height that would divide the 

remaining region into the necessary amount of equal parts. 

Configuration 4 was designed with four triangles with base 𝑏/2 and 

height ℎ/2.5. Thus, the participant used the base of the original triangle to 

divide it into two bases for two of the triangular regions. 

 

Figure 3 

Participant’s Argument in Configuration 38 

 

 

Finally, configuration 3 was classified by the participant as “simplest 

to execute”, as it was sufficient to divide the height of the original triangle into 

five equal parts. The justification could take into account the area of each pair 

                                    
8 In this way, region 1 has area equal to […]. Region 2 has area equal to […] and so on. 
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of triangles that form the regions, reducing itself to showing that those triangles 

have the same area. However, the participant calculated the area of the regions 

from bottom to top by subtracting the area of two triangles, as shown in Figure 

3. 

In Figure 4, we gathered the participant’s configurations after that 

rigorous treatment: 

 

Figure 4 

Participant-Designed Configurations with Ruler and Compass 

 

 

From the AMT perspective, we can identify the participant’s processes 

of representation and generalisation. The geometric representation was used 

throughout the resolutions, while the generalisation of an algebraic pattern was 

perceived by the participant when expressing “and so on” in the calculations 

referring to configuration 3, indicating that she realised that the subtraction of 

the areas of two triangles would have the form 
𝑏⋅(𝑛+1)⋅ℎ/5

2
−

𝑏⋅𝑛⋅ℎ/5

2
=

𝑏⋅ℎ

2⋅5
, for 

𝑛 = 1,2,3,4. 

In addition, the participant mobilised her intuition in formulating the 

four configurations and used rigour when developing or refuting each 

possibility. According to Tall (2002), intuition and rigour are not necessarily 

dichotomous. In fact, we can observe that the logical reasonableness of the 

result of the participant’s intuition shows how refined her intuition is in terms 

of logic, which means, according to that theoretical reference, that the 

participant has coherent images of the concepts involved. 



 

 Acta Sci. (Canoas), 24(3), 216-243, May/Jun. 2022 235 

Also, the participant placed the arguments in a logical sequence to 

prove that configuration 2 would not solve the problem, which shows a 

transition to the AMT, according to Tall (2002). 

Considering the theoretical reference of the Mathematical Creativity, 

we can say that the participant was creative in her resolutions, as she tested 

several configurations and concluded that one was simpler to execute than the 

others. This is configuration 3, which is different from all that we had imagined 

and whose divisions, although they can be obtained by line segments, result in 

polygons that are not necessarily convex.  

Also noteworthy is configuration 4, which provides an infinity of 

solutions as the smaller triangles move within the larger triangle. 

Configuration 1 presented by the participant would be simple to 

execute if she had considered the segments obtained on the side cut in five as 

the bases of the smaller triangles instead of finding the triangles by the heights 

relative to the base of the original triangle. It is possible that the reason the 

participant did not look at the configuration from this other perspective was that 

she could prove the configuration possibility on her first attempt. 

We can also see predominantly geometric thinking in the way she 

investigated the issue. She constructed all the solutions geometrically and, just 

to justify the equality of the areas, she used that the area of each region should 

be of 𝑏 ⋅ ℎ/10. In a given solution, the participant observed that “she could also 

have used only a millimetre ruler” but preferred to use ruler and compass 

constructions, showing her ability to use different methods. 

With regard to the Advancing Mathematical Activity, we identified 

horizontal mathematising, especially in the formulation of configurations, and 

vertical mathematising, mainly in elaborating justifications. We initially 

perceived a horizontal mathematising in the general exploration of the problem 

with the formulation of conjectures, represented by four configurations. Then, 

the participant focused on each of the configurations and sought to 

geometrically construct the division into five equal parts, in a process in which 

she had to mathematically think about the geometric implications and the 

calculation of areas to try to build the solutions, characterising a vertical 

mathematising. The possible constructions were carried out with a ruler and 

compass, mobilising the participant’s knowledge of Euclidean geometry. 

While configuration 2 might seem like a failed attempt at a solution, it 

did generate a way to divide the area into four equal parts. This way does not 
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answer the problem but is part of mobilising the participant’s thinking while 

investigating solutions to the problem. 

As for Advanced Mathematical Knowledge, the reflection the 

participant shared in answer to question “b” confirms that she mobilised 

geometric knowledge reviewed in graduation and geometric constructions with 

ruler and compass, which were used as the main resolution strategy and consist 

of skills acquired during higher education. 

The second question selected for analysis has a statement according to 

Figure 5. 

 

Figure 5 

Second Question. Prepared from the OBMEP question bank (2007) 

 

 

In this question, the research participant detailed step by step the 

resolution of the requested items; for the analyses, we will highlight the most 

relevant excerpts.  

In solving the first item, property iii) was used combined with i) and 

ii). The first operation was easily verified by just applying the properties; the 

second operation, given by 1024 ⊛ 48, demanded a process of Mathematical 
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Creativity and Advancing Mathematical Activity to the presented resolution, as 

illustrated in Figure 6. 

 

Figure 6 

Partial Resolution of the Operation 1024⊛489 

 

                                    
9 According to iii), [...].  One of the alternatives would be to split 1024 into two parcels 𝑎 and 𝑐 and split 48 

into two parcels 𝑏 and 𝑑 such that 𝑎 = 𝑏 and 𝑐 = 𝑑. This is not possible, since if 𝑎 = 𝑏, then 𝑐 ≠  𝑑, since 

𝑎 + 𝑐 = 1024 and 𝑏 + 𝑑 = 48. Thus, we must have 𝑏 = 0 and/or 𝑑 = 0 (it is not worth having 𝑎 = 0 or 

𝑐 = 0 because we don't know if the operation ⊛ is commutative). If 𝑏 = 0 and 𝑑 = 0, we would not have 

𝑏 + 𝑑 = 48. Then, we must have 𝑏 = 0 or 𝑑 = 0. Either alternative resolves the issue. If 𝑏 = 0, then 𝑑 =
48. Thus, we should have 𝑎 = 976 and 𝑐 = 48. So […]. If 𝑑 = 0, then 𝑏 = 48. Thus, we should have 𝑎 =
48 and 𝑐 = 976. So […]. 
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In this part of the resolution, we verify that there is a process of 

Mathematical Creativity based on Nadjafikhah, Yaftian, and Bakhshalizadeh 

(2012), as the participant searches for possibilities that can validate the given 

property. Thus, the answer to be obtained is not evident. Mental processes are 

required, interacting flexibly and creatively through conjecture formulation and 

hypothesis testing. The abilities to analyse a problem from different 

perspectives, identify patterns, produce multiple ideas, and choose a suitable 

method for dealing with an unfamiliar mathematical situation are indications of 

Mathematical Creativity. 

 There is also a formalisation process in the resolution presented. At 

first, there was a horizontal mathematising and, from interacting mental 

processes, there was a vertical mathematising and the exposition of the 

resolution of the question, which represent their understanding of the solution 

presented through a reflective relationship, in which we verify abstract 

relationships and formalisation of thought according to the Advancing 

Mathematical Activity, according to Rasmussen et al. (2005). Next, Figure 7 

resumes the resolution of item b. 

 

Figure 7 

Justification of the Operation 𝟒𝟖 ⊛ 𝟏𝟎𝟐𝟒10 

 

                                    
10 So, it is not possible to operate 48⊛1024 and the key to this justification is that we don't know if ⊛ is 

commutative, so we can't operate 0 ⊛ 𝑎. If we could guarantee that ⊛ is commutative, we could do: [...] 

(but we don't know how to operate). 
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In this way, we verified that the participant exposed her ideas in a 

logical sequence to prove the arguments and present the solutions and 

algebraically generalised the values to investigate the possibilities. She showed 

mathematical knowledge of algebraic structures by inferring that operation 0 ⊛

𝑎 is not defined; therefore, it would not be possible to operate 48 ⊛ 1024. 

Hereby, we understand that the mental process of synthesis was used to order 

the conjectures formulated in the resolution process.  

By presenting this justification, the participant evidences knowledge of 

the validity of properties related to Algebraic Structures, that belongs to the 

AMK, according to Zazkis and Leikin (2010). This fact is reinforced in the 

justifications given in item d), in which the participant highlights that she 

resorted to “notions of operations and their properties”, stating that perhaps it 

would not be possible to solve them without this knowledge, especially 

regarding commutativity. In item c), the participant presents a formal proof for 

properties iv) and v), in a way that reinforces the use of Mathematical 

Creativity, Advancing Mathematical Activity, and Advanced Mathematical 

Knowledge.  

We can see that the evidence of the student’s mathematical thinking, 

analysed with each theoretical reference, is different in each question or 

resolution strategy adopted by her. This result is in line with Sousa and 

Almeida’s (2017) remark when analysing a mathematical modelling activity, 

that types of thinking appear when required: 

[...] there are interactions between the cognitive processes that 

seem to reveal nuances of elementary mathematical thinking, 

on one hand, and on another, nuances of advanced 

mathematical thinking. Neither one nor another prevails, since 

these types of thoughts take place when required, or through 

the cognitive structure of the student, or by the developed 

activity. (Sousa & Almeida, 2017, p. 721). 

Next, we comment on the written production analysed and the 

theoretical references discussed. 

 

FINAL CONSIDERATIONS 

Through this research, we sought to present contributions to 

researchers in the area, both in the form of dissemination of the theoretical 

references related to the AMT and more recent ones, and decisions related to 
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the foundation of a research.  Our objective was to sum up three studies 

involving Mathematical Creativity, Advancing Mathematical Activity, and 

Advanced Mathematical Knowledge, respectively, and to illustrate possible 

contributions of those theoretical references in the analysis of a written 

production. 

Despite the many tests and resolutions we shared, we were surprised 

by the resolutions the participant presented as they contained strategies 

different from those we had predicted. This confirms that we chose well the 

questions, allowing for multiple solutions and favouring evidence of the 

participant’s thinking.   

After analysing the resolutions of the questions from the different 

theoretical perspectives and the relationships established between them, we 

realised that these references help us see some of the aspects in the resolutions 

presented by the participant. None of them sheds light on all the thinking 

mobilised in the activity, but each one focuses on specific aspects. The AMT 

highlights the thinking processes developed by the student but does not show 

the “failed” attempts, the diversity of solutions explored, the evolution of 

thinking during the activity, or the advanced knowledge mobilised. 

Mathematical Creativity, in turn, emphasises the various solution 

attempts and the mathematical thinking involved in comparing them and 

looking for a simpler one, in addition to the thinking involved in solutions that 

stand out for being more different from the usual. The Advancing Mathematical 

Activity highlights the steps taken and how the resolution was organised and 

thought. It also highlights the evolution of thinking during the resolution, 

including the formulation and investigation of conjectures. Advanced 

Mathematical Knowledge is interesting to discuss elements of the 

undergraduate curriculum that have been mobilised. 

With the synthesis and established relationships, we could verify the 

researchers’ reasons for adopting a particular theoretical reference. The 

analysis of a written production allowed us to confirm the differences in the 

perspective highlighted in each referential, leading us to situations in which 

each referential may be more appropriate. 

These conclusions encourage us to be more careful when faced with 

similar theoretical references. Before inferring that an author is saying the same 

thing as another with different words, we need to analyse the consequences of 

adopting one or another theoretical reference in a study, from the 
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epistemological roots to an emphasis or change of perspective caused by the 

careful choice of terms and definitions. 

Beyond the grounds for research in Mathematics Education, we can 

highlight the implications of using theoretical frameworks for the analysis of 

students’ production in teachers’ practice. As illustrated in the analysis 

presented, the mastery of theoretical frameworks related to learning can help 

teachers evaluate their students since it allows noticing different thinking 

processes and knowledge moved by the students. In addition to the evaluation, 

Bianchini and Machado (2015) remind us that explicit knowledge of the AMT 

processes, by supporting reflection on knowledge, collaborates with teaching 

planning. 

Furthermore, in teaching practice, teachers do not usually adopt a 

single theoretical reference to analyse student productions, as we do in research. 

Instead, teachers’ knowledge and knowings interact to support the teacher’s 

perspective of analysis so that different theoretical bases studied in their 

education can help them. Therefore, we consider that establishing relationships 

between theoretical references is essential to encourage the use of these 

references in teacher education. 
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