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ABSTRACT  

Background: Learning in exact sciences is a common problem for education 

in all countries. New education technologies are proposed to solve these situations, and 
using real problems in teaching is suggested. Objectives: This article associates Pólya’s 

problem-solving method with the real problems in the construction of the Tower of 

Pisa. Design: In this work, we propose a multidisciplinary approach to the history of 

the construction of the Tower of Pisa, related to the social, historical, geological, and 

mainly physics and engineering problems shown in this work. Setting and 

participants: The authors were responsible for elaborating and solving the proposed 

problems.   Data collection and analysis: The data used come from the history of the 

Leaning Tower of Pisa as a pedagogical basis for teaching, especially in the exact 

sciences. Results: Many problems and resolutions via Pólya’s problem-solving method 
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were performed to show teaching possibilities to teachers and students. Conclusions: 

The Tower of Pisa theme can be used to implement new education technologies, such 

as modelling, problem-solving, and real-life problems, as it enriches school culture and 

attracts an inter-and multidisciplinary character to teaching, as shown through the 

proposed teaching in exact sciences examples. 

Keywords: Teaching; Problem-solving method; Tower of Pisa; Education, 

Pólya. 

 

A construção da Torre de Pisa como base para a resolução de problemas nas 

ciências exatas e o uso da interdisciplinaridade no ensino 

 

RESUMO 

Contexto: A aprendizagem em ciências exatas é um problema comum para a 

educação em todos os países. Novas tecnologias para a educação foram e estão sendo 

propostas para tentar solucionar essas situações. A utilização de problemas reais para o 

ensino é uma das sugestões a serem utilizadas. Objetivos: Neste artigo, foi associado 

o método de resolução de problemas proposto por Pólya aos problemas reais 

encontrados na construção da Torre de Pisa. Design: Uma abordagem multidisciplinar 

foi proposta de acordo com a história da construção da Torre de Pisa em relação aos 

problemas sociais, históricos, geológicos e principalmente físicos e de engenharia que 

foram mostrados neste trabalho. Ambiente e participantes: Os autores foram os 

responsáveis pela elaboração e resolução dos problemas propostos. Coleta e análise de 

informações: Os dados utilizados são provenientes da história da Torre Inclinada de 
Pisa como base pedagógica para o ensino, especialmente nas ciências exatas. 

Resultados: Muitos problemas e sua resolução via método de resolução de problemas 

segundo Pólya foram realizados para mostrar as possibilidades de ensino para os 

professores e alunos. Conclusões: O tema Torre de Pisa pode ser usado para a 

implementação de novas tecnologias educacionais, como modelagem, resolução de 

problemas e uso de problemas da vida real, pois enriquece a cultura escolar e atrai um 

caráter interdisciplinar e multidisciplinar para o ensino, como demonstrado através do 

ensino proposto em exemplos de ciências exatas. 

Palavras-chave: Ensino; Método de resolução de problemas; Torre de Pisa; 

Educação, Pólya.  

 

INTRODUCTION 

Teaching/learning in the exact sciences has been the subject of 
discussion around the world, both in developed and developing countries, 

considering the flaws and methodologies that are still linked to the old trends 

of solving extensive lists of exercises (Alves & Aversi-Ferreira, 2019) and a 
conservative type of teaching with little practical application and little relation 
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to the activities of the future professional (Groenwald et al., 2004). Nowadays, 

following the ingrained conceptions of yore, teaching in different areas, with 

an emphasis on exact ones, is based on delivering content and then applying 
lists of exercises to absorb what has been taught, which has proved to be of 

little use for real learning (Alves & Aversi-Ferreira, 2019). 

According to modern teaching technologies for problem-solving based 
on Pólya (1945), the proposed problems must present aspects that generate 

interest to the student, such as being 1) challenging, 2) interesting, 3) unknown, 

4) not being a direct application of an algorithm, and 6) suitable for a certain 
level of difficulty (Alves & Aversi-Ferreira, 2019; Pólya, 1945). A reasonable 

criticism here is that modern education technologies are not always taught to 

prospective teachers. Those who graduated before the curricular changes do not 

know or understand technologies, and not all of them are constantly updating 
their knowledge, which generates unstructured, demotivating, and distant 

classes; this is the reality of the current student.  

Pólya (1945) indicated a method to solve mathematical problems 
highlighting the following steps: 1) understand the problem, 2) establish a plan, 

3) execute the plan, and 4) examine the solution. However, the extensive lists 

of exercises for applying algorithms are descendants of the theory of mental 
discipline coming from the 18th century in Germany (Groenwald et al., 2004), 

in which, unfortunately, monotonous repetition is still advocated as a learning 

method.  

In this way of thinking, the student often does not know what the 
problems proposed in these extensive lists of exercises are about, and the 

resolution is made following the rules of copies of similar exercises; usually, it 

is a bucket of understanding, just a reproduction of what has already been seen. 
Learning can, of course, occur, depending on the student’s effort and the 

teacher’s stimulus method, but in general terms, fewer exercises focusing on 

the use of content reasoning would be preferable, i.e., repetitive resolution time 

would be used to instigate process-oriented thinking.  

Although problems in teaching are also the responsibility of teachers, 

a recent study (Aversi-Ferreira et al., 2021) showed that most postgraduate 

students in the discipline of mathematical modelling prefer the old style of 
teaching, i.e., asking the teacher for lists of exercises similar to given examples 

instead of looking for ways to solve proposed problems based on real data. 

What happened was a proposal within the practical data of an exercise based 
on real facts, and the student would need to look for means within the content 

to solve. However, the proposal failed when students asked for a list of similar 
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exercises they could use to solve the proposed exercise. Therefore, the 

responsibility for problems in the insertion of new technologies in education 

must be shared with students.  

This is a complex discussion that deserves to be studied elsewhere, as 

students already used to a method during their education will find it difficult to 

accept another, especially one that requires reasoning and directed intellectual 

work.  

An adequate strategy for teaching is to correlate the studied content 

with applications and examples already known from the student’s reality. This 
facilitates interdisciplinarity, as most examples based on reality involve several 

areas for resolution, while exercises from a list are overly directed to only a few 

topics of the disciplines, minimising the process of relationship with reality 

(Alves & Aversi-Ferreira, 2019).  

Alternatively, facts with examples that include a mnemonic search 

already widely known by the population, by deduction, can facilitate learning, 

as it can generate interactions between students with colleagues, parents, and 
social circles and make the subject interesting and motivating. Within this 

scope, the Leaning Tower of Pisa is valuable, as it provides data on engineering, 

mathematics, and physics, in addition to soil analysis, history, and sociology.  

Knowing the history of the Tower of Pisa and the philosophy of the 

long period of its construction, this work has as its main objective the analysis 

of the countless physical properties that can be explored through an 

interdisciplinary study of history, philosophy, mathematics, physics, and 
engineering. With its vast applications, science allows us to explore different 

events, and the historic landmark of the Tower of Pisa that leaned centuries ago 

is one example. The present study takes advantage of concepts such as the 
Tower of Pisa’s force distributions, the rotation of coordinate systems, 

Galileo’s experiment, the scientific method, volume, the centre of mass, the 

critical angle calculation, and trigonometric ratios offered by the Tower case, 

which can be applied to teaching the exact sciences, especially for civil 

engineering students. 

 

THE TOWER OF PISA  

The Leaning Tower of Pisa (Figure 1), which was supposed to 

represent the wealth and prosperity of the city of Pisa, an independent trading 

port, took almost 200 years (1172 to 1370) to build (Burland, 1998; Burland et 
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al., 2009). Its construction was in three phases (Bajaj & Choudhary, 2014) as 

an independent appendix to the cathedral of Pisa. Interestingly, the Leaning 

Tower of Pisa has become one of the most historical symbols of architecture 
and engineering worldwide due to its famous incline (Bajaj & Choudhary, 

2014). It is the smallest tower in height to be considered one of the greatest 

engineering works due to its construction that employed medieval engineering 

technology.  

 

Figure 1 

Tower of Pisa. A) Upper view (Google Earth). B) Frontal view (personal 

archive, 2010) 

 

 

History mentions that in 1172, the widow Berta di Bernardo 

bequeathed 60 gold coins in her will for the purchase of stones for the 
construction of the Bell Tower, which was behind the Cathedral of Pisa. A year 

later, in August 1173, the construction began (Burland, 1998) under the 

supervision of Bonano Pisano. The third oldest in the city, the tower was to be 
independent of the cathedral and baptistery (Bajaj & Choudhary, 2014), 

circular and with elaborately carved columns with complexes in bas-relief.  
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The tower was raised as a masonry cylinder with six columns, a typical 

work of medieval engineering (Bajaj & Choudhary, 2014). After five years of 

construction, in 1178, and with only four floors built,  the foundations were 
found to be shallow and inadequate. The subsoil was not very solid and 

unstable, which made the tower lean (Bajaj & Choudhary, 2014; Bartelletti et 

al., 1988). The construction stopped for 100 years for the first time, according 
to some authors, for financial reasons due to the war between Pisa and Florence. 

According to other researchers, the cause of the stoppage is unknown (Burland, 

1998). At that time, the ground had settled (Bajaj & Choudhary, 2014). 

In 1275, more floors were added, under the supervision of Giovanni di 

Simone (an architect from Camposanto), who added more height to the floors 

opposite the slope, during six years of work (Bartelletti et al., 1988). Today, the 

Tower of Pisa is curved, with the top sloping away from the initial sloping side 

(Bajaj & Choudhary, 2014). 

Construction came to a halt again due to conflict between Meloria, Pisa, 

and Genova (Burland, 1998). The seventh floor was completed in 1319, with 
work carried out by the architect Tommaso di Andrea Pisano, who harmonised 

the Gothic elements with the Romanesque style of the tower. The bell tower 

was finally started in 1360, and it was finished in 1370 (Bartelletti et al., 1988; 
Burland, 1998). Disregarding the leaning of the Tower of Pisa, its construction 

demonstrates the clever use of arches and columns to support and distribute 

weights and loads, something beyond expected from a medieval construction. 

The first two floors have 15 arches each, made with closed marble, while the 
other floors contain 30 arches and the bell tower has 16. However, the builder 

did not consider or realise the clayey soil that would need to support a weight 

of 16 million kilograms. The identity of this architect is controversial; some 
believe that it was Bonano Pisano, a well-known artist from the 12th century 

who lived in Pisa, but others believe that it was Diotisalvi, the author of the 

baptistry project (Bartelletti et al., 1988). 

The structure of the tower is cylindrical, made of limestone and lime 
mortar (several openings were found in this mixture), with the outside clad in 

marble (Bartelletti et al., 1988; Burland, 1998; Burland et al., 2009). Due to its 

flexibility and ability to withstand stresses well, limestone is the structure 
responsible for the lack of cracks in the structure of the tower, and the reason 

for its not falling over.  

The Tower of Pisa has eight floors, with 55.88 m on the lowest side and 
56.67 m on the highest side, a base of 15.484 m in diameter, located 5.5 m 

below ground level, and has 296 steps on the south side and 294 on the north 
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side. Seven bells were placed, one for each musical note (Bajaj & Choudhary, 

2014).  

There have been several attempts to decrease the tower’s inclination 
over time. Initially, in 1272, engineers tried to compensate for the tilt by making 

the upper floors on one side higher than the other; however, this added to the 

weight, and the tower sank and tilted further. In 1838, the architect Alessandro 
Della Gherardesca excavated the tower to expose the foundation; however, as 

the opening was below the water level, the slope increased by 0.5° due to 

infiltration (Burland, 1998; Johnston & Burland, 2000). 

In 1911, systematic measurements of the movement of the tower began, 

showing an inclination of around 5° from north to south (Bartelletti et al., 

1988). The southward slope is believed to have started with the installation of 

the bells (Burland, 1998). In 1934, 361 perforations were made in the base and 
filled with 99 tons of cement, improving the structure (Bartelletti et al., 1988; 

Burland, 1998) but, as a consequence, the tower moved 10 mm to the south.  

In the 1960s, the Italian Ministry of Public Works created an 
international commission to study the structure and mechanics of the ground 

under the Tower of Pisa, and, in 1971, delivered technical documentation 

suggesting an international competition for the stabilisation of the structure 

(Bartelletti et al., 1988). 

In 1984, Raffaelo Bartelleti, Glorglo Berardi, and Luciano Caroti 

formed a team appointed by the Ministry to stabilise the tower. The experts 

proposed two steps toward the solution. The first was stabilising the moment 
of force, and the second involved completely shoring up the existing 

foundation. The second would occur depending on the outcome of the first step 

(Bartelletti et al., 1988).  

The implementation of the first step involved the temporary use of steel 

structures placed on a circular concrete beam located far enough from the tower 

and then building structures under the it in mini piles with high bearing capacity 

after removing part of the subsoil under the tower; according to Burland (1998), 

this increased the slope by about 10 arcseconds, approximately 0.003o.  

During the last hundred years of construction, there were several 

attempts to correct the structure of the tower, but to no avail. It was not until 
2008 that engineers verified that the tower had stopped leaning since it was 

built.  
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THE HISTORY OF THE TOWER AFTER MODERN 

ENGINEERING 

In the 1990s, the Tower of Pisa was closed to the public. In March 

1990, the Prime Minister of Italy appointed a new multidisciplinary 

commission, including structural and geotechnical engineering, architecture, 
architectural history, archaeology, and restoration, under the direction of 

Professor Michele Jamiolkowski, to take steps to stabilise the tower (Burland, 

1994; Burland et al., 2009).  

The great challenge of modern engineering was to stabilise a tower 

founded on fragile and sandy soil, whose support structure will also be 

supported on that same soil. This challenge spurred the authors to study this 

great engineering work.  

This commission could, for the first time, use computer models to 

predict the behaviour of the tower in the face of stabilisation hypotheses 

(Burland, 1998). The computer models would need reliable information about 
the tower’s inclination through more exact measurements. One fact became 

clear: previous attempts to correct the slope had increased it!  

The computational analysis used a finite geotechnical element program 
known as ICEFP, developed by Imperial College (Potts & Gens, 1984), based 

on the critical stage concept (Schofield & Wroth, 1968) and non-linear elastic-

plastic hardening, to try to understand the behaviour of the tower’s tilt (Burland, 

1998; Burland & Potts, 1995).  

The Tower of Pisa was reconstructed step by step via a computational 

model, and a good relationship between the model and reality occurred, mainly 

about the slope value (Burland, 1998).  

Burland and Potts (1995) concluded, via computational analysis, that 

the Tower’s instability is due to the phenomenon called ‘leaning instability’ by 

Edmund Hambly (1985), which is not due to a lack of soil support capacity, but 
to insufficient rigidity, due to the so-called ‘Pancone clay’ or soft clay (Burland, 

1998).  

The subsoil under the tower is made up of three main layers. The first, 

about 10 m thick, is made up of sandy sediments and soft clay. The second is 
formed by clay of marine origin, and is very sensitive, with about 40 m of depth. 

The third layer is formed by dense sand, of marine origin, about 60 m deep 

(Burland et al., 2009). To stabilise the tower, two problems would need to be 
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solved: stabilising the masonry structure that suffers from high structural stress 

due to the slope and stabilising the foundation (Burland, 1998).  

For the first stage, lightweight prestressed plastic cables covered with 
steel were attached to the first-floor and second-floor spans (Burland, 1998). 

The second stage was carried out with the placement of concrete weights in the 

form of rings on the north side of the tower to stabilise it on the soft clay layer. 
Placement of the rings began in May 1993 and was completed in January 1994. 

By February 1994, the tower had decreased its slope by 2.5 mm (Burland et al., 

1994).  

After placing the rings, excavation took place under the foundation on 

the south side and the placement of a water table on the north side, and with the 

decrease in inclination, the Tower of Pisa was then reopened to the public in 

2001 (Burland, 2002; Burland et al., 2009). In two decades, and at an expense 
of 25 million dollars, the work of this last commission left the tower with an 

inclination of 3.97º or 3.9 mm; this was about 5.5º at the beginning of the work.  

The data commented on in the form of history presents a rich source 
for educational studies in various areas of knowledge, both in secondary and 

higher education. Within this, the objective of this work is to provide exercises 

and debates with questions and provide answers to examples of problem-
solving processes within the scope of new educational problem-solving 

technologies (Alves & Aversi-Ferreira, 2019; Pólya, 1945) in the exact sciences 

and in an interdisciplinary manner with geography, history, and sociology. 

 

INTERDISCIPLINARITY IN THE STUDY OF THE 

LEANING TOWER OF PISA IN GENERAL TERMS 

With the appeal of new didactic technologies for quality teaching, 

interdisciplinarity can be explored by using the Leaning Tower of Pisa as an 
example for exercises in different areas. Sociology is an area where the Tower 

of Pisa can be widely discussed, as the Tower of Pisa was started with money 

from a woman, the widow Berta di Bernardo, who, in 1172, left money to build 

a bell tower. 

The first proposal encompasses a fruitful discussion about women’s 

societal role over time. For example, questions can centre on 1) how women 

were treated in the 12th century and 2) whether the widow, because she was 
rich, was treated differently than other less wealthy women without a husband. 

For example, did the ancient law grant monetary control of the husband’s 
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possessions to all widows? Do rich women also suffer less discrimination 

today? These are some questions to be asked in a sociological and historical 

discussion using the Tower of Pisa.  

Historically, from 1173 to the present day, the construction of the 

Leaning Tower of Pisa has gone through several events, such as the work being 

interrupted in times of war due to a lack of money. Historical and sociological 
discussions about the consequences of war, such as the lack of money for social 

work and food for the people, can be used as a reference to show the harm and 

strange motives of many wars and the consequences for the population. This 
issue has been widely discussed, as the war between Russia and Ukraine is 

generating economic changes worldwide (Ali et al., 2022). This is the second 

proposal.  

In a multidisciplinary teaching process, the exact sciences should be 
considered/prioritised for students who have difficulties in mathematics and 

physics. Many of those students may show an interest in the humanities; 

therefore, the history of the Tower of Pisa may raise such interest, reducing the 
fear of exact disciplines during teaching. In this way, the students realise that 

mathematics and physics are part of everyday life and part of history. These 

proposals will serve, according to the teacher’s needs, to both high school and 

higher education students.  

The other proposals using the Leaning Tower of Pisa focused on the 

exact sciences are detailed below. 

 

INTERDISCIPLINARITY IN THE EXACT SCIENCES 

Notwithstanding the analysis of movement and forces carried out in 

Ancient Greece, mainly by Aristotle in experimental terms, and considering the 
thrust studied by Archimedes as an experimental work, practical analysis began 

in the modern age with Francis Bacon and René Descartes at the beginning of 

the 17th century with the advent of the scientific method (Voit, 2019). Also in 
the 17th century, Galileo Galilei and Isaac Newton performed mathematical 

analyses associated with experiments in the studies of physics and motion. 

Newton made this analysis more complete, focusing on the method of flows 
applied to motion using the ideas of differential calculus he discovered 

concomitantly with Leibnitz (Nogueira, 2016).  
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METHODOLOGY 

A bibliographic survey was carried out by searching for data on the 
Leaning Tower of Pisa to qualify the proposals of the exercises within the 

CAPES [Coordination of People Improvement of Superior Level – Brazil] 

periodicals platform that allows for finding texts within other databases such as 
Scielo, Scopus, and Web of Science. Additional material was supplied by 

searching within Google Academic. The main works consulted dealt more 

specifically with the construction of the Leaning Tower of Pisa with 

information on the scientific method, engineering, physics, teaching, and 
others. In total, 23 texts were broken down and separated by subject (Table 1, 

Figure 2). 

 

Table 1  

Works that specifically deal with the construction of the Leaning Tower of 

Pisa 

Texts Subjects Type 

1. Ali et al., (2022). The Economic 

Implications of the War in Ukraine for 

Africa and Morocco.  

Other Article 

2. Alves & Aversi-Ferreira (2019). 

Comments on the problems solving 

methodology in education of civil 

engineering in Brazil.  

Teaching Article 

3. Aversi-Ferreira et al., (2021). The 

perceptions of students and instructor in a 

graduate mathematical modeling class: 

An experience with remote education.  

Teaching Article 

4. Bajaj & Choudhary (2014). 

Outstanding Structure: The Leaning 

Tower Of Pisa.  

Engineering Article 

5. Bartelletti, Berardi & Caroti, (1988). 

Stabilisation of the Leaning Tower of Pisa 

Engineering Article 

6. Burland (1998). The enigma of the 

leaning of the tower of Pisa.  

Engineering Article 

7. Burland (2002). The Stabilisation of 

the Leaning Tower of Pisa.  

Engineering Article 

8. Burland, Jamiolkowski & Viggiani 

(2009). Leaning Tower of Pisa: Behaviour 

after Stabilization Operations.  

Engineering Article 
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9. Burland et al., (1994). Pisa 

updatebehaviour during counterweight 

application.  

Engineering Article 

10. Burland & Potts (1995). 

Development and application of a 

numerical model for the leaning tower of 

Pisa.  

Engineering Article 

11. Crombie (1957). Augustine to 

Galileo: The History of Science A.D. 

400-1650.  

Physics Book 

12. Frizzarini, & Cargnin  (2005). 

Prática de Ensino: Novas tecnologias e 

jogos didáticos. 

Teaching Book 

13. Groenwald, Silva & Mora (2004). 

Perspectives in Mathematics Education. 

Teaching Article 

14. Halliday & Walker (2013). 

Fundamentals of Physics.  

Physics Book 

15. Hambly (1985). Soil buckling and 

leaning instability of tall structures.  

Engineering Article 

16. Hibbeler (2016). Engineering 

mechanics. Statics. 

Physics Book 

17. Johnston & Burland (2000). An 

Early Example of the Use of under 

excavation to stabilise the Tower of 

Stchad, Wybunbury in 1832.  

Engineering Article 

18. Newburgh & Andes (1995). Galileo 

Redux or, how do nonrigid, extended 

bodies fall?  

Physics Article 

19. Nogueira (2016). História da 

matemática. 

Teaching Book 

20. Pires (2011). A evolução das ideias da 

Física.  

Physics Book 

21. Pólya (1945). How to Solve It: A New 

Aspect of Mathematical Method. 

Teaching Book 

22. Potts & Gens (1984). The effect of the 

plastic potential in boundary value 

problems involving plane strain 

deformation.  

Physics Book 

23. Schofield & Wroth (1968). Critical 

state soil mechanics.  

Engineering Article 

24. Voit (2019). Perspective: Dimensions 

of the scientific method.  

Scientific 

method 

Article 
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25. Volkwyn et al., (2020). Learning to 

use Cartesian coordinate systems to solve 

physics problems: The case of 

‘movability.’ 

Physics Article 

 

The sources and their respective subjects are shown in Table 1, 

considering the interdisciplinarity carried out when working on the Leaning 

Tower of Pisa. Later, a review covered the different areas of study.  

The texts presented problems that the authors considered to have the 

potential for teaching in the exact sciences, looking for points of contact with 

other areas to foster an interdisciplinary process. 

 

Figure 2  

Comparative graph of the subjects of the texts studied to generate the 

epistemological bases of this work. 

 

 

RESULTS AND DISCUSSION 

Twenty-five texts were consulted for the preparation of this article. The 

texts were used as a basis for the preparation of the problem proposals with the 
Leaning Tower of Pisa as a substrate. Specifically, about the Leaning Tower of 



 Acta Sci. (Canoas), 24(5), 231-265, Sep./Oct. 2022 244 

Pisa, most of the articles dealt with engineering and history. Of the other texts, 

such as those on physics, one was on the history of Galileo and the experiment 

on falling bodies, while the others were on physics, engineering, and education 

and used for the theoretical foundation of the problems involving calculus. 

 

Case study: forces 

The four steps for solving problems indicated by Pólya (1945) can be 

used in the reasoning process, and we shall comment concomitantly in teaching 

the proposed problems. Pólya’s steps proposed are: 

i. Read and understand the problem. 

ii. Establish an action plan. 

iii. Execute the plan. 

iv. Examine the solution.  

So, according to the interpretation of the Pólya’s method, we must 

verify the data, the incognita, the conditions and/or the restrictions and whether 
the conditions are enough to determine the incognita in reading and 

understanding the problem.   

Then, once space and time are defined, the referential system of an 

object is determined (Halliday et al., 2013). To study the tower, the reference 
is inertial and can be the Earth or any object in the surroundings; it is better to 

choose the Earth. For this proposal, which is to define the inertial reference, the 

Tower of Pisa is stationary, and we can verify that the resultant force (�⃗�𝑅) that 

acts on it is equal to zero (Hibbeler, 2016): 

 

�⃗�𝑅 = ∑ �⃗�𝑖
𝑛
𝑖=1 = 𝑚�⃗� = 0 . 

 

In this case, after searching the necessary data, the incognita, and the 

conditions, the conclusion of the first step was that �⃗�𝑅 = 0. 

Figure 3 and its reasoning are made to establish an action plan, 

according to Pólya (1945). Indeed, the study of theory in the books about the 
statics is to search for a similar problem as the necessary formulas to help the 

solution. 
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Figure 3  

Reference systems. Case 1: y axis parallel to the vertical axis of the Tower of 

Pisa. Case 2: x axis parallel to the ground. 

 

 

Then, the reasoning for the steps is as follows. For the basic teaching 

of static systems, two types of analysis can be proposed: case 1, the Cartesian 

system with the y-axis parallel to the inclined vertical axis of the tower, and 

case 2, with the x-axis parallel to the floor (Figure 3). 

Naturally, in case 1, the x-axis component of the gravitational force 

(�⃗�𝑔𝑥) will have an inclination angle of 4º concerning the horizontal plane of the 

Earth’s surface, and, in case 2, the x component is zero. The student will be 

able to see that two axes are enough and that a two-dimensional analysis will 

provide data on the stability of the tower. 

In continuation, we will see that the Cartesian system can be suitable 

for the studied system and calculate the components of forces with the data 

provided from the tower, such as the angle of inclination and its mass (m), 

approximately 14.7 × 106 𝑘𝑔.  

Case 1 Case 2 
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Using vector notation, we find that the gravitational force acting on the 

tower is: 

�⃗�𝑔 = �⃗�𝑔𝑥 + �⃗�𝑔𝑦

�⃗�𝑔𝑥 = �⃗�𝑔 𝑐𝑜𝑠(𝜃)

�⃗�𝑔𝑥 = �⃗�𝑔 𝑠𝑖𝑛(𝜃)

                                                         (1). 

 

In scalar notation, these components can then be calculated as 𝐹𝑔𝑥 =

𝐹𝑔 𝑐𝑜𝑠(𝜃) and 𝐹𝑔𝑥 = 𝐹𝑔 𝑠𝑖𝑛(𝜃) being 𝐹𝑔 = 𝑚𝑔 and 𝑔 = 9.81 𝑚/𝑠2. In unit 

vector notation, this is �⃗�𝑔 = 𝐹𝑔𝑥 �̂� + 𝐹𝑔𝑦𝑗̂. In both cases, vector notions can be 

established and related to scalar notation.  

Calculating the gravitational force components with the angle of 

inclination to the y-axis can be done using the midpoint of the transverse line 
segment of the tower’s base. As the Tower of Pisa is an extensive body and the 

weight² supported by the foundation is what matters, a relationship between 

theory and practice can be discussed.  

Ideally, all the weight of the tower is placed at a point, i.e., the midpoint 

of its base (Figure 4), mentioned above, and the components of the gravitational 

force are calculated for that point. It is shown to the student that it is enough to 

make the centre of mass of the tower coincide with the centre of coordinates 
and that the position of the latter will not matter since the distance does not 

participate in the calculation given the angles. Thus, the mass and the 

acceleration of gravity (g) can be considered the same for the entire length of 

the tower.  

The third step proposed by Pólya is the execution of the plan. Then, 

we apply the values in the formulas of the components studied above, using 
quantities with the units in the International System of Units (kg for mass and 

N for forces). For high school, the value of the cosine of 86º can be provided, 

or, according to new ideas in mathematics education, the use of a calculator can 

be introduced for checking accounts, correcting errors, and visualising results 
(Frizzarini & Cargnin, 2005). The plan execution to solve the force problems 

is shown below, and it is important to verify whether each step is correct and 

whether it is possible to obtain proof for each step.  
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Figure 4 

Representation of forces applied to the Tower of Pisa: gravitational force 

(�⃗�𝑔) and normal force  (�⃗�𝑁). 

 

 

The formulas used are:  

𝐹𝑔𝑥 = 𝐹𝑔 𝑐𝑜𝑠 𝜃

𝐹𝑔𝑥 = 𝑚𝑔 𝑐𝑜𝑠 𝜃

𝐹𝑔𝑦 = 𝐹𝑔 𝑠𝑖𝑛 𝜃

𝐹𝑔𝑦 = 𝑚𝑔 𝑠𝑖𝑛 𝜃

   

 

 The data were placed on the formulas: 
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𝐹𝑔𝑥 = 𝐹𝑔 𝑐𝑜𝑠 𝜃

𝐹𝑔𝑥 = 𝑚𝑔 𝑐𝑜𝑠 𝜃 = 14.7 × 106 𝑘𝑔 ∙
9.81𝑚

𝑠2
∙ 𝑐𝑜𝑠 86𝑜 = 1.006 × 107𝑁

𝐹𝑔𝑦 = 𝐹𝑔 𝑠𝑖𝑛 𝜃

𝐹𝑔𝑦 = 𝑚𝑔 𝑠𝑖𝑛 𝜃 = 14.7 × 106 𝑘𝑔 ∙
9.81𝑚

𝑠2
∙ 𝑠𝑖𝑛 86𝑜 = 1.439 × 108𝑁

 

 

The solution examination, in this case, is to verify whether the data 

were placed correctly and calculate again to verify whether the calculus is 
correct. For that, verification of real data is a kind of reference in the final 

calculation. 

After checking the results, attention should be drawn to the difference 

in values between the x and y components and, especially, the existence of the 

x component, which should ideally not exist in a construction of this type.  

The problem follows to another stage, and Pólya’s steps were used but 

not indicated as in the above example. The search for theories and/or analogous 
problems were performed using the references and analysis of the situation, 

showing that the problems were not solved directly but carefully, in function of 

the theory behind each proposed problem. 

Then the result, due to the x component being different from zero, can 

be calculated by the Pythagorean theorem: 

𝐹𝑔 = √𝐹𝑔𝑥
2 + 𝐹𝑔𝑦

2

𝐹𝑔 = √(3.15 × 107𝑁)2 + (1.41 × 108𝑁)2 = 1.442 × 108𝑁

 

 

This calculation, associated with Figure 4, will show the imbalance of 

the tower with the resultant facing the fourth quadrant of the Cartesian 

coordinate system.   

The calculation was performed idealised for a point of concentrated 
mass, but calculations can be made considering the tower as an extensive body 

to teach in higher courses.  

The notion of normal can be shown and recalled in this problem, 
showing that it originates from the contact of surfaces and is perpendicular to 
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the surface, with the same direction of action of the gravitational force, but in 

the opposite direction (Halliday et al., 2013). 

 

Figure 5 

Idealised beam to support the tower 

 

 

For an engineering course, it is clear that there is a moment and a shear 

or shear force in the tower because the x component is different from zero. An 

idealised beam can be drawn at the base of the tower to support its weight, and 
the reactions can be calculated. The beam idealised for a tower whose y-axis 

was perpendicular to the transverse axis on the ground would have full and 

continuous support, but the angle of 4º indicates that a part of the side works as 
a cantilever beam due to the obtuse angle of the tower about the y-axis. Because 

this idealised beam provides support, in addition to the weight of the tower, it 

is also subject to the reaction of the component �⃗�𝑥  (�⃗�𝑔𝑥) . 

New data must be added for the resolution, such as the base diameter 

(d) of 15.5 m. It is obvious that the beam has area and volume, but the 

calculations are made considering a two-dimensional analysis (Figure 5). To 
verify the force that the wall on the obtuse angle side supports, we idealised a 

beam fixed to this wall supporting the weight of the tower as a distributed force 

and the reaction to the component �⃗�𝑦  (�⃗�𝑔𝑦). 
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The beam is isostatic with three unknowns and three reactions (the 

components of the gravitational force and the moment). The distributed force 

(𝐹𝑑) is calculated by the component 𝐹𝑦  divided by the area of the base of the 

tower: 

𝐹𝑑 =
𝐹𝑦

𝜋∙(
𝑑

2
)2

=
1.439×108

188.692

𝑁

𝑚2 = 7.624 × 105 𝑁

𝑚2                              (2). 

 

The calculations for the beam follow the principle of rigid body 

equilibrium (Hibbeler, 2016), in which the sum of the resultant force and the 

moment are equal to zero, and can be calculated directly by analysing the beam 

or using an integral calculation (Figure 6): 

 

�⃗�𝑅 = ∑ �⃗�𝑖
𝑛
𝑖=1 = 0

�⃗⃗⃗� = ∑ �⃗⃗⃗�𝑖 = 0𝑛
𝑖=1

                                                      (3). 

 For the reaction to the distributed force (Ra), we have 

How ∑ �⃗�𝑦𝑖
𝑛
𝑖=1 = 0  ⇒   𝑅𝑎 − 𝐹𝑑 ∙ 𝑑 = 0

𝑅𝑎 − 7.624 × 105 𝑁

𝑚2 ∙ 15.5𝑚 = 0  ⇒   𝑅𝑎 = 1.182 × 107 𝑁

𝑚

(4). 

For the reaction to the force 𝐹𝑥  (𝑁𝑒), we have 

How ∑ �⃗�𝑥𝑖
𝑛
𝑖=1 = 0  ⇒  𝑁𝑒 − 𝐹𝑥 = 0

𝑁𝑒 − 1.006 × 107𝑁 = 0  ⇒   𝑁𝑒 = 1.006 × 107𝑁
                  (5). 

For the moment (𝑀), we have 

How ∑ �⃗⃗⃗�𝑖
𝑛
𝑖=1 = 0  ⇒   𝑀 + 𝑅𝑎 ∙

𝑑

2
= 0

𝑀 + 9.158 × 107𝑁 = 0  ⇒   𝑀 = −9.158 × 107𝑁

                (6). 

  

The equations for the shear or shear force (V) and the moment from it 

are then calculated (Figure 6). 
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Figure 6 

Variables involved in the analysis of a beam indicated in the scheme. 

 
The shear force V can be calculated as 

−𝑉(𝑥) − 𝐹𝑑 ∙ 𝑥 + 𝑅𝑎  = 0 ⇒   𝑉(𝑥) = 𝑅𝑎 − 𝐹𝑑 ∙ 𝑥

𝑉(𝑥) = 1.182 × 107 𝑁

𝑚
− 7.624 × 105 𝑁

𝑚2 ∙ 𝑥
                 (7). 

The moment M can be calculated by analysis of the structure (see 

equation 9) or from the integral of the shear force; this is the teacher’s choice. 

𝑀 = ∫ 𝑉(𝑥)  𝑑𝑥

𝑀 = ∫(𝑅𝑎 − 𝐹𝑑 ∙ 𝑥)𝑑𝑥 = 𝑅𝑎 ∙ 𝑥 − 𝐹𝑑 ∙
𝑥2

2
+ 𝐶

𝑀 = 1.182 × 107 𝑁

𝑚
∙ 𝑥 − 3.812 × 105 𝑁

𝑚2 ∙ 𝑥2 + 𝐶

                (8). 

To calculate the constant C, it is enough to obtain the value of C for x 

equal to 15.5 m, which is the length of the beam and with M=0, then we have 

𝐶 = 7.624 × 105
𝑁

𝑚2
∙ (15.5𝑚)2 − 1.182 × 107

𝑁

𝑚
∙ (15.5𝑚) = −9.158 × 107𝑁 

𝑀 = −3.812 × 105
𝑁

𝑚2
∙ 𝑥2 + 1.182 × 107

𝑁

𝑚
∙ 𝑥 − 9.158 × 107𝑁

 

(9). 

 



 Acta Sci. (Canoas), 24(5), 231-265, Sep./Oct. 2022 252 

If one wants to find the direct value of the moment, one applies the 

definite integral over the length d, the diameter of the base of the tower 

𝑀 = ∫ 𝑉(𝑥)
𝑑

0
𝑑𝑥                                                      (10). 

 

Other calculations can be performed from the one shown for the exact 

sciences, such as the tower’s centre of gravity or the maximum displacement as 

examples. 

 

Case study: rotation of coordinate systems 

We demonstrated above that to study the Leaning Tower, we can 

change the Cartesian coordinate system, and this rotation of references defines 

that the coordinates of the position vector in the two systems are related in such 

a way that the position vector (or in any case another vector) is kept invariant.  

This change concerns a geometric aspect of the problem. From a 

mathematical point of view, a rotation is like a linear transformation involving 

coordinates; in physical terms, all the physical properties of the body are 
maintained. Changing coordinates can facilitate solving some problems 

(Volkwyn et al., 2020).  

As proposed for the upper level, let any vector A pass through the 
inclined axis of the tower, forming a line segment joining the midpoints of the 

base and dome of the tower, in the base-dome direction for vector A (Figure 7).  

By definition, θ is the angle resulting from (θ’ + φ). Considering that 

Ay = A ∙ cosθ and 𝐴𝑧  =  𝐴 ∙ 𝑠𝑒𝑛𝜃 

𝐴𝑦 = 𝐴 ∙ 𝑐𝑜𝑠𝜃′ = 𝐴 ∙ 𝑐𝑜𝑠(𝜃 − 𝜑)                                       (11). 

 

We will use the expression for the cosine of the difference of the arcs 

φ 

 

𝐴𝑦 = 𝐴 ∙ 𝑐𝑜𝑠𝜃 ∙ 𝑐𝑜𝑠𝜑 + 𝐴 ∙ 𝑠𝑒𝑛𝜃 ∙ 𝑠𝑒𝑛𝜑. 

 

We are describing Ay(y’) as a component of vector A in the rotated 

system, in terms of the components of vector A in the original system 
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𝐴𝑦 = 𝐴𝑦 ∙ 𝑐𝑜𝑠𝜑 + 𝐴𝑧 ∙ 𝑠𝑒𝑛𝜑. 

 

Figure 7 

Representation of coordinates i and i’. 

 
 

Retracing for the 𝑧 axis 

 

𝐴𝑧 = 𝐴 ∙ 𝑠𝑒𝑛𝜃′ = 𝐴 ∙ 𝑠𝑒𝑛(𝜃 − 𝜑). 

 

So, we expand the sine of the arc difference 

 

𝐴𝑧 = 𝐴 ∙ 𝑠𝑒𝑛𝜃 ∙ 𝑐𝑜𝑠𝜑 − 𝐴 ∙ 𝑐𝑜𝑠𝜃 ∙ 𝑠𝑒𝑛𝜑, 
𝐴𝑧 = 𝐴𝑧 ∙ 𝑐𝑜𝑠𝜑 − 𝐴𝑦 ∙ 𝑠𝑒𝑛𝜑. 

 

The components of vector A were written in the run system in terms of 

the original components. To have a condensed representation of this 

transformation, we will use the following matrices to represent the planes: 
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𝐴 = (𝐴𝑦  𝐴𝑧 ), 

𝐴 = (𝐴𝑦′  𝐴𝑧′  ), 

(𝐴𝑦′  𝐴𝑧′  ) = (𝑐𝑜𝑠𝜃 ∙ 𝑠𝑒𝑛𝜑 − 𝑠𝑒𝑛𝜑 ∙ 𝑐𝑜𝑠𝜑 ) ∙ (𝐴𝑦  𝐴𝑧 ). 

 

The determinant of the rotation matrix is given a value of 1, which 
means that the transformation does not change the norm of the vector. When 

the vector is transformed by rotating it, this transformation is maintained, and 

its modulus is preserved 

 

𝐴𝑖 = ∑ 𝑅𝑖𝑗
2
𝑗=1 ∙ 𝐴𝑗 . 

 

The above is a condensed way of demonstrating this transformation, 

known as a rotation matrix. Einstein’s notation tells us that we can omit the 

summation, so 

 

𝐴𝑖 = 𝑅𝑖𝑗 ∙ 𝐴𝑗 . 

 

Taking the Leaning Tower of Pisa as a reference, this is an action 

proposal for physics teaching with the calculation of the gravitational force and 
its components. Furthermore, this exemplifies the use of matrices and change 

of basis for studying analytical geometry with linear algebra aimed at higher 

education students and the transfer of an inertia centre in civil engineering 

studies. 

 

Case study: galileo’s mythical or real experiment and the 

scientific method 

Although several high school books, such as Paul Hewitt’s (Conceptual 
Physics), claim that this experiment was factual, other authors state its origin is 

doubtful regarding the facts (Pires, 2011; Crombie, 1957). Nevertheless, it is 

considered the second most beautiful experiment in the history of physics by 

Physics World magazine. Galileo’s example generates an intersection with the 
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discipline of history and a discussion about the veracity of facts and the reason 

for different interpretations of certain subjects.  

In a hypothetical experiment, Galileo wanted to refute Aristotle, who 
claimed that bodies with different masses fall at different speeds. Galileo 

already knew the answer to this experiment, but he decided to prove it. Under 

the conditions of the time, he used the Tower of Pisa, tall and leaning, to carry 
out the demonstration, from which two lead balls were thrown, supposedly with 

weights x and 2x, and both would have fallen at the same rate.  

At the same time, one must consider that it was comparative and 
observed with the naked eye. According to recent studies, it would be 

impossible because we cannot disregard aspects such as the variation of the 

different forces applied to each arm to keep balls of different weights, nor 

would the release time of the balls by the hands be precisely the same 

(Newburgh & Andes, 1995).  

The history of Galileo’s relationship with the Leaning Tower of Pisa 

and physics is an interesting subject and can be evaluated from both historical 
and philosophical aspects and by considering the evolution of the scientific 

method, going from observation to proofs via mathematical models, in addition 

to other aspects depending on the creativity of the teacher. 

 

Case study: calculation of the volume and analysis of the 

position of the centre of mass (barycentre) of the tower of 

pisa 

The centre of mass or the centre of gravity can be analysed based on 
the Leaning Tower of Pisa. Therefore, the concept of static balance and centre 

of gravity, mentioned above but not developed, must be understood.  

Static equilibrium refers to the equilibrium of a body that is being 
analysed. To reach static equilibrium, it is necessary that the sum of the forces 

acting on the body be zero at any point. The centre of mass is a single point in 

space where the sum of the weighted position vectors of all particles in the 

system relative to this point amounts to zero. The centre of mass and centre of 
gravity coincide since the acceleration of gravity is constant for the whole body 

extension. 

During the renovations of the tower, to reduce its degree of inclination, 
almost 100 tons of mortar were injected into the ground. As we know that there 

was no change in the inclination, one of the solutions was to add extra mass to 
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its base to reduce the angle of inclination and its centre of mass, which 

generated a variation in its density, making it non-homogeneous. 

For an object to be in equilibrium, the projection of its centre of mass 
must intersect its base of support (Halliday et al., 2013). However, for teaching 

purposes, the tower is considered homogeneous, i.e., with a constant density 

(ρ). In the Tower of Pisa, at a given height, the diameter is smaller than at the 
base, so, as a model, it would be compared to a truncated cone (Figure 8). In 

this example, we used a truncated cone for the study of the maximum slope, 

but, in front, the tower was modelled as a cylinder (see opposite). 

 

Figure 8 

Observe the scheme of the Tower of Pisa with the dotted lines indicating the 

Leaning Tower and the solid line a truncated cone where the height h, the 

greater radius R1, the smaller radius R2, and the generatrix s are identified. 
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Note that the area A can be calculated by tilting the cone 90º, making 

h coincide with the x-axis, defined from b to c and with the generatrix being a 

function of the 1st degree of the type y=ax (Figure 9). 

 

Figure 9  

Model of the analysis of a truncated cone to calculate its volume. Consider this 

schematic as a slice of a three-dimensional figure. 

 

The generator s is given by 

 

(𝑎𝑥)2 = 𝑠2 = (𝑅1 − 𝑅2)2 + ℎ2 
 

But, the revolution of the generatrix, that is, rotating the trunk area 

about the x-axis, we will have the volume of the cone trunk as follows 

 

𝑉 = ∫ 𝜋
𝑐

𝑏

∙ (𝑎𝑥)2𝑑𝑥 

𝑉 = 𝜋 ∙ 𝑎2 ∫ 𝑥2
𝑐

𝑏

𝑑𝑥 

𝑉 = 𝜋 ∙ 𝑎2 ∙ [
𝑥3

3
]

𝑏

𝑐
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𝑉 =
𝜋 ∙ 𝑎2

3
∙ (𝑐3 − 𝑏3) 

𝑉 =
𝜋 ∙ 𝑎2

3
∙ (𝑐 − 𝑏) ∙ (𝑐2 + 𝑐𝑏 + 𝑏2) 

𝑉 =
𝜋

3
∙ (𝑐 − 𝑏) ∙ [(𝑎𝑐)2 + 𝑎𝑐 ∙ 𝑎𝑏 + (𝑎𝑏)2] 

 

According to Figure 9, y=f(x)=ax, indicates that f(c)=ac; therefore, 

ac=R2 and, consequently, R1=ab and h=c-b, therefore 

 

𝑉 =
𝜋

3
∙ (ℎ) ∙ [(𝑅2)2 + 𝑅2 ∙ 𝑅1 + (𝑅1)2] 

The centre of mass is closer to the base because it contains the largest 

area (largest radius) and thus also the largest mass (considering the 

homogeneous Tower) (Hibbeler, 2016).  

The calculation of the centre of mass can be performed according to the 

discipline involved, as it is essential for solid mechanics in civil engineering, 

but its position can also be interpreted in calculus and analytical geometry 

classes. 

 

Calculation of the critical angle 

The critical angle of the Tower of Pisa is the greatest angle of 

inclination that the tower can reach. The exercise to find this angle involves 

static balance, the centre of gravity, the similarity of triangles, and 
trigonometry, among other basic math concepts, and is thus highly suitable for 

secondary and higher education.  

Considering the Tower of Pisa as built of a homogeneous material (the 
whole tower having a constant density), and, unlike the previous example 

model of a truncated cone, for didactic reasons here the model will be a 

homogeneous cylinder, with the centre of gravity at half its height. Considering 

a cylindrical and symmetrical tower (within the conditions imposed by the 

problem, the centre of gravity Cg=27.9 m.  

As the vertical that intersects the centre of mass approaches the end, 

the greater the risk of the tower tipping over; that is, the closer it will be to its 
critical angle. The challenge is to lower the slope to make it safe for tourists, as 
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it is a major tourist attraction in Italy. We know that j=4.5 m, using the 

similarity of triangles (Figure 10): 

 

ℎ

𝑗
=

ℎ

2

𝑗′
⇒

55,86

2

4,5
=

27,93

𝑗′
 ∴ 𝑗′ = 2.41 𝑚. 

 

Figure 10  

Representation of the Leaning Tower based on the proposed problem. 

 

 

The tower will reach the critical angle when the centre of mass (or 

centre of gravity) is at a distance r from line h. Thus, 𝑗 =  𝑗′/2, where 𝑗′ =
3.5𝑚 and 𝑗 = 7𝑚.  

To find the maximum angle, we have 

 

𝑡𝑎𝑛𝜃 =
𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑠𝑖𝑑𝑒

𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑠𝑖𝑑𝑒
 

𝑡𝑎𝑛𝜃 =
7

55.86
 

 

𝑡𝑎𝑛𝜃 = 0.1253 

 

𝜃 = 𝑡𝑎𝑛−1(0.1253) 
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𝜃 = 7.42𝑜  
 

The maximum angle that the tower can reach is 7.42°.   

Currently, the Tower of Pisa has 3.97° of inclination with 3.17° to reach 

the maximum angle. Therefore, it is closer to the maximum angle than to the 

vertical. 

 

Study: trigonometric ratios 

An interesting activity for the study of trigonometric relationships is to 

use the history of the tilt of the tower throughout history to teach this subject, 

in this case, in high school.  

To start, we use the right triangle ratios to calculate the height of the 
Tower of Pisa on the lower side (south side of the tower), which has been 

modified to try to decrease the slope. It is essential to understand the difference 

between the height of the tower and its length (in most cases, these two concepts 

are the same), but this is not the case here.  

The activity consists of using the trigonometric relationships learned to 

find the variation in the height of the Tower of Pisa over time. As a modelling 

activity, the problem can be done via a survey of the tower’s history (see Table 

1).  

To solve this problem, we need to use the trigonometric ratios, which 

are the relationships between the sides of a right triangle, which are: 

 

𝑠𝑒𝑛𝜃 =
𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑠𝑖𝑑𝑒

ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒
;   𝑐𝑜𝑠𝜃 =

𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑠𝑖𝑑𝑒

ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒
;    𝑡𝑔𝜃 =

 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑠𝑖𝑑𝑒

𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑠𝑖𝑑𝑒
  

 

Tangent and sine can be used for the process of verifying the final 

results. 

 

For the year 1292, we have, 

𝑐𝑜𝑠 (1.5𝑜) =
ℎ

55.86 𝑚
⇒ ℎ = 𝑐𝑜𝑠−1(1.5𝑜) = 55.84 𝑚. 
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For the year 1817, 

𝑐𝑜𝑠 (5.1𝑜) =
ℎ

55.86 𝑚
⇒ ℎ = 𝑐𝑜𝑠−1(5.1𝑜) = 55.64 𝑚. 

 

For the year 1990, 

𝑐𝑜𝑠 (5.5𝑜) =
ℎ

55.86 𝑚
⇒ ℎ = 𝑐𝑜𝑠−1(5.5𝑜) = 55.60 𝑚. 

 
For the year 2020: 

𝑐𝑜𝑠 (3.9𝑜) =
ℎ

55.86 𝑚
⇒ ℎ = 𝑐𝑜𝑠−1(3.9𝑜) = 55.72 𝑚. 

 

Finally, Table 2 can be provided without data for students to complete 

with information searches. 

 

Table 2   

Information on the degree of inclination over the years. 

Year Degree of inclination Height (h) of the Tower 

1292 1,5° 55.84 m 

1817 5,1° 55.64 m 

1990 5,5° 55.60 m 

2020 3,97° 55.72 m 

 

FINAL CONSIDERATIONS 

After several attempts to stabilise the Leaning Tower of Pisa, only in 

the computer age, with computational prediction models, was it possible to 

initiate a stabilisation project that proved functional, at least so far.  

The Tower of Pisa is one of the greatest monuments in the world, 1) 

since the beginning of its construction and by the medieval Roman style 

associated with the Baroque and 2) during construction. Interestingly, we can 
add the fact of its 3) inclination, a flaw that has generated considerable 

attention. The design time was not followed; its construction took about 199 

years, involving several engineers, architects, and masons. We do not know the 
exact number of people involved due to a lack of complete documentation. It 

was a public building, and perhaps for that reason alone, it was not demolished. 

This may also be the reason why so much money was spent on the correction 

of its structures.  
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The construction of the Tower of Pisa shows the resilience of the 

human spirit, both in continuing its construction and in the attempt to correct 

the inclination. However, we must mention that there was no proper 

investigation of the project execution.  

The facts cited above are splendid in terms of the history of engineering 

and construction, both regarding the execution and the various attempts to solve 
the problem of the slope, involving several areas and, perhaps most 

interestingly, bringing engineering closer to history. As engineering is a course 

with an emphasis on techniques, physics and mathematics are essential tools to 
improve teaching for engineers, as their teaching has been poor and impacts 

professionals worldwide (Alves & Aversi-Ferreira, 2019).  

These problems are not prerogatives of engineering education, as the 

exact sciences present difficulties in quality teaching and implementing new 
education technologies. However, epistemology already exists for the teaching 

of the basic sciences, but in the case of the applied sciences, studies on how to 

teach these subjects is scarce.  

In conclusion, the history of the Leaning Tower of Pisa has a 

pedagogical basis for teaching, especially in the exact sciences, as it enriches 

school culture and attracts an inter- and multidisciplinary character to teaching, 
as shown through the proposed examples. The Tower of Pisa theme can be used 

to implement new education technologies, such as modelling, problem-solving, 

and real-life problems. We not only detailed Pólya’s problem-solving method 

to solve one problem but also provided a base for solving other problems using 

the same method. 
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